Utilities for efficient sparse matrix operations¶
sparse
¶
SparseLinear
¶
Bases: Module
Sparse linear layer for efficient operations with sparse matrices.
This layer implements a sparse linear transformation, similar to nn.Linear, but operates on sparse matrices for memory efficiency.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
in_features
|
int
|
Size of the input feature dimension. |
required |
out_features
|
int
|
Size of the output feature dimension. |
required |
connectivity
|
Tensor
|
Sparse connectivity matrix in COO format. |
required |
feature_dim
|
int
|
Dimension on which features reside (0 for rows, 1 for columns). |
-1
|
bias
|
bool
|
If set to False, no bias term is added. |
True
|
requires_grad
|
bool
|
Whether the weight and bias parameters require gradient updates. |
True
|
Source code in src/bioplnn/models/sparse.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
|
forward(x)
¶
Performs sparse linear transformation on the input tensor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor
|
Input tensor of shape (H, ) if feature_dim is 0, otherwise (, H). |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Output tensor after sparse linear transformation. |
Source code in src/bioplnn/models/sparse.py
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
|
SparseODERNN
¶
Bases: SparseRNN
Sparse Ordinary Differential Equation Recurrent Neural Network.
A continuous-time version of SparseRNN that uses an ODE solver to
simulate the dynamics of the network and simultaneously compute the
parameter gradients (see torchode.AutoDiffAdjoint
).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
compile_solver_kwargs
|
Optional[Mapping[str, Any]]
|
Keyword arguments for torch.compile. |
None
|
Source code in src/bioplnn/models/sparse.py
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 |
|
forward(x, num_evals=2, start_time=0.0, end_time=1.0, h0=None, hidden_init_fn=None)
¶
Forward pass of the SparseODERNN layer.
Solves the initial value problem for the ODE defined by update_fn.
The gradients of the parameters are computed using the adjoint method
(see torchode.AutoDiffAdjoint
).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor
|
Input tensor. |
required |
num_evals
|
int
|
Number of evaluations to return. The default of 2 means
that the ODE will be evaluated at the start and end of the
simulation and those values will be returned. Note that this
does not mean the |
2
|
start_time
|
float
|
Start time for simulation. |
0.0
|
end_time
|
float
|
End time for simulation. |
1.0
|
h0
|
Optional[Tensor]
|
Initial hidden state. |
None
|
hidden_init_fn
|
Optional[Union[str, TensorInitFnType]]
|
Initialization function. |
None
|
Returns:
Type | Description |
---|---|
tuple[Tensor, Tensor, Tensor]
|
Hidden states, outputs, and time points. |
Source code in src/bioplnn/models/sparse.py
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 |
|
update_fn(t, h, args)
¶
ODE function for the SparseODERNN.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
t
|
Tensor
|
Current time point. |
required |
h
|
Tensor
|
Current hidden state. |
required |
args
|
Mapping[str, Any]
|
Additional arguments including input data. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Rate of change of the hidden state. |
Source code in src/bioplnn/models/sparse.py
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 |
|
SparseRNN
¶
Bases: Module
Sparse Recurrent Neural Network (RNN) layer.
A sparse variant of the standard RNN that uses truly sparse linear transformations to compute the input-to-hidden and hidden-to-hidden transformations (and optionally the hidden-to-output transformations).
These sparse transformations are computed using the torch_sparse
package
and allow for efficient memory usage for large networks.
This allows for the network weights to directly be trained, a departure from GANs, which typically use fixed sparse weights.
Source code in src/bioplnn/models/sparse.py
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 |
|
__init__(input_size, hidden_size, connectivity_hh, output_size=None, connectivity_ih=None, connectivity_ho=None, bias_hh=True, bias_ih=False, bias_ho=True, use_dense_ih=False, use_dense_ho=False, train_hh=True, train_ih=True, train_ho=True, default_hidden_init_fn='zeros', nonlinearity='Sigmoid', batch_first=True)
¶
Initialize the SparseRNN layer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_size
|
int
|
Size of the input features. |
required |
hidden_size
|
int
|
Size of the hidden state. |
required |
connectivity_hh
|
Union[Tensor, PathLike, str]
|
Connectivity matrix for hidden-to-hidden connections. |
required |
output_size
|
Optional[int]
|
Size of the output features. |
None
|
connectivity_ih
|
Optional[Union[Tensor, PathLike, str]]
|
Connectivity matrix for input-to-hidden connections. |
None
|
connectivity_ho
|
Optional[Union[Tensor, PathLike, str]]
|
Connectivity matrix for hidden-to-output connections. |
None
|
bias_hh
|
bool
|
Whether to use bias in the hidden-to-hidden connections. |
True
|
bias_ih
|
bool
|
Whether to use bias in the input-to-hidden connections. |
False
|
bias_ho
|
bool
|
Whether to use bias in the hidden-to-output connections. |
True
|
use_dense_ih
|
bool
|
Whether to use a dense linear layer for input-to-hidden connections. |
False
|
use_dense_ho
|
bool
|
Whether to use a dense linear layer for hidden-to-output connections. |
False
|
train_hh
|
bool
|
Whether to train the hidden-to-hidden connections. |
True
|
train_ih
|
bool
|
Whether to train the input-to-hidden connections. |
True
|
train_ho
|
bool
|
Whether to train the hidden-to-output connections. |
True
|
default_hidden_init_fn
|
str
|
Initialization mode for the hidden state. |
'zeros'
|
nonlinearity
|
str
|
Nonlinearity function. |
'Sigmoid'
|
batch_first
|
bool
|
Whether the input is in (batch_size, seq_len, input_size) format. |
True
|
Source code in src/bioplnn/models/sparse.py
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
|
forward(x, num_steps=None, h0=None, hidden_init_fn=None)
¶
Forward pass of the SparseRNN layer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor
|
Input tensor. |
required |
num_steps
|
Optional[int]
|
Number of time steps. |
None
|
h0
|
Optional[Tensor]
|
Initial hidden state. |
None
|
hidden_init_fn
|
Optional[Union[str, TensorInitFnType]]
|
Initialization function. |
None
|
Returns:
Type | Description |
---|---|
tuple[Tensor, Tensor]
|
Hidden states and outputs. |
Source code in src/bioplnn/models/sparse.py
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 |
|
init_hidden(batch_size, init_fn=None, device=None)
¶
Initialize the hidden state.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch_size
|
int
|
Batch size. |
required |
init_fn
|
Optional[Union[str, TensorInitFnType]]
|
Initialization function. |
None
|
device
|
Optional[Union[device, str]]
|
Device to allocate the hidden state on. |
None
|
Returns:
Type | Description |
---|---|
Tensor
|
The initialized hidden state of shape (batch_size, hidden_size). |
Source code in src/bioplnn/models/sparse.py
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
|
init_state(num_steps, batch_size, h0=None, hidden_init_fn=None, device=None)
¶
Initialize the internal state of the network.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
num_steps
|
int
|
Number of time steps. |
required |
batch_size
|
int
|
Batch size. |
required |
h0
|
Optional[Tensor]
|
Initial hidden states. |
None
|
hidden_init_fn
|
Optional[Union[str, TensorInitFnType]]
|
Initialization function. |
None
|
device
|
Optional[Union[device, str]]
|
Device to allocate tensors on. |
None
|
Returns:
Type | Description |
---|---|
list[Optional[Tensor]]
|
The initialized hidden states for each time step. |
Source code in src/bioplnn/models/sparse.py
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
|
update_fn(x, h)
¶
Update function for the SparseRNN.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor
|
Input tensor at current timestep. |
required |
h
|
Tensor
|
Hidden state from previous timestep. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Updated hidden state. |
Source code in src/bioplnn/models/sparse.py
473 474 475 476 477 478 479 480 481 482 483 |
|